Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 530(4): 739-744, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32782143

RESUMO

SerB2 is an essential phosphoserine phosphatase (PSP) that has been shown to be involved in Mycobacterium tuberculosis (Mtb) immune evasion mechanisms, and a drug target for the development of new antitubercular agents. A highly similar (91.0%) orthologous enzyme exists in the surrogate organism Mycobacterium marinum (Mma) and could have acquired similar properties. By homology modeling, we show that the two PSPs are expected to exhibit almost identical architectures. MmaSerB2 folds into a homodimer formed by two intertwined subunits including two ACT regulatory domains followed by a catalytic core typical of HAD (haloacid dehalogenase) phosphatases. Their in vitro catalytic properties are closely related as MmaSerB2 also depends on Mg2+ for the dephosphorylation of its substrate, O-phospho-l-serine (PS), and is most active at neutral pH and temperatures around 40 °C. Moreover, an enzyme kinetics study revealed that the enzyme is inhibited by PS as well, but at lower concentrations than MtbSerB2. Substrate inhibition could occur through the binding of PS in the second active site and/or at the ACT domains interface. Finally, previously described beta-carboline MtbSerB2 inhibitors also decrease the phosphatase activity of MmaSerB2. Altogether, these results provide useful information when M.marinum is used as a model to study immune evasion in tuberculosis.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium marinum/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Proteínas de Bactérias/química , Humanos , Modelos Moleculares , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium marinum/química , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/metabolismo , Monoéster Fosfórico Hidrolases/química , Fosfosserina/metabolismo , Conformação Proteica , Multimerização Proteica , Especificidade por Substrato
2.
Proteins ; 87(5): 365-379, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30632633

RESUMO

Small heat shock proteins (sHSPs) are ATP-independent molecular chaperones present ubiquitously in all kingdoms of life. Their low molecular weight subunits associate to form higher order structures. Under conditions of stress, sHSPs prevent aggregation of substrate proteins by undergoing rapid changes in their conformation or stoichiometry. Polydispersity and dynamic nature of these proteins have made structural investigations through crystallography a daunting task. In pathogens like Mycobacteria, sHSPs are immuno-dominant antigens, enabling survival of the pathogen within the host and contributing to disease persistence. We characterized sHSPs from Mycobacterium marinum M and determined the crystal structure of one of these. The protein crystallized in three different conditions as dodecamers, with dimers arranged in a tetrahedral fashion to form a closed cage-like architecture. Interestingly, we found a pentapeptide bound to the dodecamers revealing one of the modes of sHSP-substrate interaction. Further, we have observed that ATP inhibits the chaperoning activity of the protein.


Assuntos
Proteínas de Choque Térmico Pequenas/química , Chaperonas Moleculares/química , Mycobacterium marinum/química , Trifosfato de Adenosina/química , Cristalografia por Raios X , Ligação Proteica , Dobramento de Proteína , Multimerização Proteica
3.
ACS Nano ; 12(8): 8646-8661, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30081622

RESUMO

The enhanced permeability and retention (EPR) effect is the only described mechanism enabling nanoparticles (NPs) flowing in blood to reach tumors by a passive targeting mechanism. Here, using the transparent zebrafish model infected with Mycobacterium marinum we show that an EPR-like process also occurs allowing different types of NPs to extravasate from the vasculature to reach granulomas that assemble during tuberculosis (TB) infection. PEGylated liposomes and other NP types cross endothelial barriers near infection sites within minutes after injection and accumulate close to granulomas. Although ∼100 and 190 nm NPs concentrated most in granulomas, even ∼700 nm liposomes reached these infection sites in significant numbers. We show by confocal microscopy that NPs can concentrate in small aggregates in foci on the luminal side of the endothelium adjacent to the granulomas. These spots are connected to larger foci of NPs on the ablumenal side of these blood vessels. EM analysis suggests that NPs cross the endothelium via the paracellular route. PEGylated NPs also accumulated efficiently in granulomas in a mouse model of TB infection with Mycobacterium tuberculosis, arguing that the zebrafish embryo model can be used to predict NP behavior in mammalian hosts. In earlier studies we and others showed that uptake of NPs by macrophages that are attracted to infection foci is one pathway for NPs to reach TB granulomas. This study reveals that when NPs are designed to avoid macrophage uptake, they can also efficiently target granulomas via an alternative mechanism that resembles EPR.


Assuntos
Modelos Animais de Doenças , Granuloma/metabolismo , Mycobacterium marinum/química , Nanopartículas/metabolismo , Artéria Pulmonar/metabolismo , Tuberculose Pulmonar/metabolismo , Peixe-Zebra/microbiologia , Animais , Granuloma/microbiologia , Camundongos , Microscopia Confocal , Mycobacterium marinum/metabolismo , Nanopartículas/química , Permeabilidade , Artéria Pulmonar/microbiologia , Tuberculose Pulmonar/microbiologia
4.
J Proteome Res ; 17(9): 3246-3258, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30080413

RESUMO

N-terminal acetylation (NTA) is a post-transcriptional modification of proteins that is conserved from bacteria to humans. In bacteria, the enzymes that mediate protein NTA also promote antimicrobial resistance. In pathogenic mycobacteria, which cause human tuberculosis and other chronic infections, NTA has been linked to pathogenesis and stress response, yet the fundamental biology underlying NTA of mycobacterial proteins remains unclear. We enriched, defined, and quantified the NT-acetylated populations of both cell-associated and secreted proteins from both the human pathogen, Mycobacterium tuberculosis, and the nontuberculous opportunistic pathogen, Mycobacterium marinum. We used a parallel N-terminal enrichment strategy from proteolytic digests coupled to charge-based selection and stable isotope ratio mass spectrometry. We show that NTA of the mycobacterial proteome is abundant, diverse, and primarily on Thr residues, which is unique compared with other bacteria. We isolated both the acetylated and unacetylated forms of 256 proteins, indicating that NTA of mycobacterial proteins is homeostatic. We identified 16 mycobacterial proteins with differential levels of NTA on the cytoplasmic and secreted forms, linking protein modification and localization. Our findings reveal novel biology underlying the NTA of mycobacterial proteins, which may provide a basis to understand NTA in mycobacterial physiology, pathogenesis, and antimicrobial resistance.


Assuntos
Proteínas de Bactérias/química , Mycobacterium marinum/química , Mycobacterium tuberculosis/química , Peptídeos/análise , Processamento de Proteína Pós-Traducional , Acetilação , Proteínas de Bactérias/classificação , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Cromatografia Líquida , Biologia Computacional/métodos , Humanos , Mycobacterium marinum/isolamento & purificação , Mycobacterium marinum/metabolismo , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/metabolismo , Peptídeos/química , Proteólise , Especificidade da Espécie , Coloração e Rotulagem/métodos , Espectrometria de Massas em Tandem , Tuberculose Pulmonar/microbiologia
5.
Microb Cell Fact ; 16(1): 217, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29183333

RESUMO

BACKGROUND: Although mycobacterial glycolipids are among the first-line molecules involved in host-pathogen interactions, their contribution in virulence remains incomplete. Mycobacterium marinum is a waterborne pathogen of fish and other ectotherms, closely related to Mycobacterium tuberculosis. Since it causes tuberculosis-like systemic infection it is widely used as a model organism for studying the pathogenesis of tuberculosis. It is also an occasional opportunistic human pathogen. The M. marinum surface-exposed lipooligosaccharides (LOS) are immunogenic molecules that participate in the early interactions with macrophages and modulate the host immune system. Four major LOS species, designated LOS-I to LOS-IV, have been identified and characterized in M. marinum. Herein, we investigated the interactions between a panel of defined M. marinum LOS mutants that exhibited various degrees of truncation in the LOS structure, and human-derived THP-1 macrophages to address the potential of LOSs to act as pro- or avirulence factors. RESULTS: A moderately truncated LOS structure did not interfere with M. marinum invasion. However, a deeper shortening of the LOS structure was associated with increased entry of M. marinum into host cells and increased elimination of the bacilli by the macrophages. These effects were dependent on Toll-like receptor 2. CONCLUSION: We provide the first evidence that LOSs inhibit the interaction between mycobacterial cell wall ligands and appropriate macrophage pattern recognition receptors, affecting uptake and elimination of the bacteria by host phagocytes.


Assuntos
Lipopolissacarídeos/genética , Lipopolissacarídeos/imunologia , Macrófagos/microbiologia , Mycobacterium marinum/imunologia , Receptor 2 Toll-Like/imunologia , Linhagem Celular , Parede Celular/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/biossíntese , Macrófagos/imunologia , Mycobacterium marinum/química , Mycobacterium marinum/patogenicidade , Mycobacterium marinum/fisiologia , Fatores de Virulência
6.
Wei Sheng Wu Xue Bao ; 56(9): 1496-1503, 2016 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-29738222

RESUMO

Objective: To identify differentially expressed proteins in Mycobacterium marinum wild-type (WT) and mkl::Tn mutant strains, and provide new clues for exploring the functions of mkl gene. Methods: Cellular proteins were extracted from cultures of M. marinum WT and mkl::Tn strains, and labelled with isobaric tags for relative and absolute quantitation (iTRAQ) 4-plex. Differentially expressed proteins were identified with LC-MS/MS and subjected to biological information analysis. Results: A total of 566 differentially expressed proteins were revealed, among which 232 proteins were up-regulated (ratio≥1.4) and 334 proteins were down-regulated (ratio≤0.7). These proteins are mainly associated with lipid metabolism, cell wall and cell processes, intermediary metabolism and respiration, and hypothetical proteins. The most down-regulated protein DesA3, is a fatty acid desaturase and involved in the synthesis of oleic acid. Further experiments showed that the growth of mkl::Tn strain was attenuated on 7H10-ADC agar plate without oleic acid, suggesting that mkl may play a role in the biosynthesis of oleic acid. Conclusion: Differentially expressed proteins were identified in M. marinum mkl::Tn compared to WT, and these results shed light on the mechanisms of mkl gene in mycobacterial pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium marinum/metabolismo , Proteínas de Bactérias/genética , Cromatografia Líquida , Mycobacterium marinum/química , Mycobacterium marinum/genética , Mycobacterium marinum/crescimento & desenvolvimento , Ácido Oleico/biossíntese , Proteômica , Espectrometria de Massas em Tandem
7.
J Org Chem ; 80(5): 2767-80, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25642627

RESUMO

A convergent strategy was developed for the stereoselective synthesis of four unusual N-acylated monosaccharides (5-8), which are fragments of lipooligosaccharide IV (LOS-IV) from Mycobacterium marinum. A critical substrate-controlled asymmetric cyclization of an amino acid derived oxazolidine provided a key lactam intermediate 11, which was successfully converted to targets 5-7. The key step in the synthesis of 8 was a one-pot cascade oxidation-cyclization-oxidation reaction of a Boc-protected amino alcohol, prepared from 3-butynol, which led to the formation of lactam 15. The five-membered ring lactam intermediates in these synthetic routes were sensitive to elimination side reactions, but careful manipulation of the reaction sequence allowed for the stereoselective synthesis of the targets. This work represents the first synthesis of these unusual motifs, which have been shown to be essential to the bioactivity of LOS-IV.


Assuntos
Aminoácidos/química , Amino Açúcares/síntese química , Lipopolissacarídeos/química , Mycobacterium marinum/química , Oxazóis/química , Acilação , Amino Açúcares/química , Ciclização , Oxirredução
8.
Anal Chem ; 86(10): 4873-8, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24725189

RESUMO

Capillary zone electrophoresis (CZE) with an electrokinetically pumped sheath-flow nanospray interface was coupled with a high-resolution Q-Exactive mass spectrometer for the analysis of culture filtrates from Mycobacterium marinum. We confidently identified 22 gene products from the wildtype M. marinum secretome in a single CZE-tandem mass spectrometry (MS/MS) run. A total of 58 proteoforms were observed with post-translational modifications including signal peptide removal, N-terminal methionine excision, and acetylation. The conductivities of aqueous acetic acid and formic acid solutions were measured from 0.1% to 100% concentration (v/v). Acetic acid (70%) provided lower conductivity than 0.25% formic acid and was evaluated as low ionic-strength and a CZE-MS compatible sample buffer with good protein solubility.


Assuntos
Proteínas de Bactérias/química , Mycobacterium marinum/química , Eletroforese Capilar , Peptídeos/química , Processamento de Proteína Pós-Traducional , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
9.
J Bacteriol ; 195(9): 2050-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23457249

RESUMO

A striking characteristic of mycobacteria is the presence of an unusual outer membrane which forms a thick permeability barrier and provides resistance to many antibiotics. Although specialized proteins must reside in this layer, only few mycolate outer membrane (MOM) proteins have been identified to date. Their discovery is complicated by difficulties in obtaining good separation of mycobacterial inner and outer membranes. During our efforts to identify novel mycobacterial outer membrane proteins (MOMPs), we discovered that we can enrich for MOMPs using differential solubilization of mycobacterial cell envelopes. Subsequently, these different fractions were analyzed by nano liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). This proteomic analysis confirmed that our marker proteins for inner membrane and MOM were found in their expected fractions and revealed a few interesting candidate MOMPs. A number of these putative MOMPs were further analyzed for their expression and localization in the cell envelope. One identified MOMP, MMAR_0617 of Mycobacterium marinum, was purified and demonstrated to form a large oligomeric complex. Importantly, this protein showed a clear single-channel conductance of 0.8 ± 0.1 ns upon reconstitution into artificial planar lipid bilayers. The most surprising feature of MMAR_0617 is a long C-terminal threonine-rich domain with extensive modifications. In summary, we have identified a novel mycobacterial outer membrane porin with unusual properties.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Mycobacterium marinum/metabolismo , Porinas/metabolismo , Treonina/metabolismo , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Membrana Celular/química , Membrana Celular/genética , Detergentes/química , Dados de Sequência Molecular , Mycobacterium marinum/química , Mycobacterium marinum/genética , Porinas/química , Porinas/genética , Porinas/isolamento & purificação , Estrutura Terciária de Proteína , Alinhamento de Sequência , Treonina/análise
10.
Mol Microbiol ; 86(2): 472-84, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22925462

RESUMO

Pathogenic mycobacteria require type VII secretion (T7S) systems to transport virulence factors across their complex cell envelope. These bacteria have up to five of these systems, termed ESX-1 to ESX-5. Here, we show that ESX-5 of Mycobacterium tuberculosis mediates the secretion of EsxN, PPE and PE_PGRS proteins, indicating that ESX-5 is a major secretion pathway in this important pathogen. Using the ESX-5 system of Mycobacterium marinum and Mycobacterium bovis BCG as a model, we have purified and analysed the T7S membrane complex under native conditions. blue native-PAGE and immunoprecipitation experiments showed that the ESX-5 membrane complex of both species has a size of ~ 1500 kDa and is composed of four conserved membrane proteins, i.e. EccB(5) , EccC(5) , EccD(5) and EccE(5) . Subsequent limited proteolysis suggests that EccC(5) and EccE(5) mostly reside on the periphery of the complex. We also observed that EccC(5) and EccD(5) expression is essential for the formation of a stable membrane complex. These are the first data on a T7S membrane complex and, given the high conservation of its components, our data can likely be generalized to most mycobacterial T7S systems.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Membrana Celular/metabolismo , Mycobacterium marinum/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Membrana Celular/química , Membrana Celular/genética , Mycobacterium marinum/química , Mycobacterium marinum/genética , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Estrutura Terciária de Proteína , Transporte Proteico
11.
J Biol Chem ; 287(41): 34432-44, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22798072

RESUMO

Although it was identified in the cell wall of several pathogenic mycobacteria, the biological properties of dimycolyl-diarabino-glycerol have not been documented yet. In this study an apolar glycolipid, presumably corresponding to dimycolyl-diarabino-glycerol, was purified from Mycobacterium marinum and subsequently identified as a 5-O-mycolyl-ß-Araf-(1→2)-5-O-mycolyl-α-Araf-(1→1')-glycerol (designated Mma_DMAG) using a combination of nuclear magnetic resonance spectroscopy and mass spectrometry analyses. Lipid composition analysis revealed that mycolic acids were dominated by oxygenated mycolates over α-mycolates and devoid of trans-cyclopropane functions. Highly purified Mma_DMAG was used to demonstrate its immunomodulatory activity. Mma_DMAG was found to induce the secretion of proinflammatory cytokines (TNF-α, IL-8, IL-1ß) in human macrophage THP-1 cells and to trigger the expression of ICAM-1 and CD40 cell surface antigens. This activation mechanism was dependent on TLR2, but not on TLR4, as demonstrated by (i) the use of neutralizing anti-TLR2 and -TLR4 antibodies and by (ii) the detection of secreted alkaline phosphatase in HEK293 cells co-transfected with the human TLR2 and secreted embryonic alkaline phosphatase reporter genes. In addition, transcriptomic analyses indicated that various genes encoding proinflammatory factors were up-regulated after exposure of THP-1 cells to Mma_DMAG. Importantly, a wealth of other regulated genes related to immune and inflammatory responses, including chemokines/cytokines and their respective receptors, adhesion molecules, and metalloproteinases, were found to be modulated by Mma_DMAG. Overall, this study suggests that DMAG may be an active cell wall glycoconjugate driving host-pathogen interactions and participating in the immunopathogenesis of mycobacterial infections.


Assuntos
Citocinas , Glicolipídeos , Mediadores da Inflamação , Macrófagos , Mycobacterium marinum , Receptor 2 Toll-Like , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Glicolipídeos/química , Glicolipídeos/imunologia , Glicolipídeos/isolamento & purificação , Glicolipídeos/metabolismo , Glicolipídeos/farmacologia , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/imunologia , Molécula 1 de Adesão Intercelular/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Infecções por Mycobacterium não Tuberculosas/imunologia , Infecções por Mycobacterium não Tuberculosas/metabolismo , Mycobacterium marinum/química , Mycobacterium marinum/imunologia , Mycobacterium marinum/metabolismo , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo
13.
J Lipid Res ; 49(2): 455-63, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17982136

RESUMO

Mycobacteria, including Mycobacterium tuberculosis, are characterized by a unique cell wall rich in complex lipids, glycolipids, polyketides, and terpenoids. Many of these metabolites have been shown to play important roles in mycobacterial virulence and their inherent resistance to many antibiotics. Here, we report the development of a new simple method for global analysis of these metabolites using two-dimensional (1)H-(13)C heteronuclear single quantum coherence nuclear magnetic resonance. The major advantages of this method are as follows: the small amount of sample and the minimal sample manipulation required; a relatively short procedural time; and the ability to rapidly attain a qualitative and quantitative lipid profile of a mycobacterial sample in which the majority of the clinically relevant lipids can be observed simultaneously. The effectiveness of this method is demonstrated in four different areas of major concern to the mycobacterial research community: i) adaptive changes in cell wall lipids as a result of drug treatment; ii) analysis of gene function; iii) characterization of new mycobacterial species; and iv) analysis of the production of virulence factors in clinical isolates of M. tuberculosis. This method is complementary to mass spectrometry-based lipidomic technologies and provides an urgently needed tool to gain a better understanding of the role of lipids in mycobacteria pathogenesis.


Assuntos
Lipídeos/análise , Lipídeos/biossíntese , Mycobacterium/metabolismo , Ressonância Magnética Nuclear Biomolecular , Etambutol/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Lipídeos/genética , Mycobacterium/efeitos dos fármacos , Mycobacterium/genética , Mycobacterium marinum/química , Mycobacterium marinum/efeitos dos fármacos , Mycobacterium marinum/metabolismo , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium ulcerans/efeitos dos fármacos , Mycobacterium ulcerans/genética , Mycobacterium ulcerans/metabolismo , Fatores de Virulência/biossíntese , Fatores de Virulência/química , Fatores de Virulência/genética
14.
J Infect Dis ; 186(12): 1797-807, 2002 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-12447766

RESUMO

T cell responses to ESAT-6 and culture filtrate protein 10 (CFP-10), antigens expressed by Mycobacterium tuberculosis but not by M. bovis bacille Calmette-Guérin (BCG), were found to discriminate reliably between infection with M. tuberculosis and BCG vaccination. Because the esat-6 and cfp-10 genes occur in M. kansasii and M. marinum, T cell responses to ESAT-6 and CFP-10 were investigated in patients infected with M. kansasii or M. marinum, persons intensively exposed to environmental mycobacteria, and unexposed control subjects. Tuberculin skin tests were performed, and peripheral blood mononuclear cells were cocultured with ESAT-6, CFP-10, peptide mixtures of ESAT-6 and CFP-10, and control antigens. When enzyme-linked immunosorbent assay (ELISA) and enzyme-linked immunospot assay (ELISPOT) were used to measure interferon-gamma production, most M. kansasii- or M. marinum-infected patients and several persons exposed to environmental mycobacteria were found to respond to ESAT-6 and/or CFP-10. ELISA and ELISPOT yielded comparable results, as did whole antigen and peptides (P<.0001). These results may be relevant for the development of novel assays for diagnosis of tuberculosis.


Assuntos
Antígenos de Bactérias/farmacologia , Proteínas de Bactérias/farmacologia , Infecções por Mycobacterium não Tuberculosas/imunologia , Mycobacterium kansasii/imunologia , Mycobacterium marinum/imunologia , Linfócitos T/imunologia , Teste Tuberculínico , Adulto , Idoso , Células Cultivadas , Feminino , Humanos , Imunoensaio , Interferon gama/biossíntese , Masculino , Pessoa de Meia-Idade , Infecções por Mycobacterium não Tuberculosas/diagnóstico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium kansasii/química , Mycobacterium marinum/química , Doenças Profissionais/imunologia , Proteínas Recombinantes/farmacologia , Linfócitos T/efeitos dos fármacos
15.
Clin Exp Immunol ; 118(2): 253-60, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10540187

RESUMO

The interaction between mycobacterial phenolic glycolipids (PGLs) and phagocytes was studied. Human neutrophils were allowed to interact with each of four purified mycobacterial PGLs and the neutrophil production of reactive oxygen metabolites was followed kinetically by luminol-/isoluminol-amplified chemiluminescence. The PGLs from Mycobacterium tuberculosis and Mycobacterium kansasii, respectively, were shown to stimulate the production of oxygen metabolites, while PGLs from Mycobacterium marinum and Mycobacterium bovis BCG, respectively, were unable to induce an oxidative response. Periodate treatment of the M. tuberculosis PGL decreased the production of oxygen radicals, showing the importance of the PGL carbohydrate moiety for the interaction. The activation, however, could not be inhibited by rhamnose or fucose, indicating a complex interaction which probably involves more than one saccharide unit. This is in line with the fact that the activating PGLs from M. tuberculosis and M. kansasii contain tri- and tetrasaccharides, respectively, while the nonactivating PGLs from M. marinum and M. bovis BCG each contain a monosaccharide. The complement receptor 3 (CR3) has earlier been shown to be of importance for the phagocyte binding of mycobacteria, but did not appear to be involved in the activation of neutrophils by PGLs. The subcellular localization of the reactive oxygen metabolites formed was related to the way in which the glycolipids were presented to the cells.


Assuntos
Antígenos de Bactérias/imunologia , Glicolipídeos/imunologia , Ativação de Neutrófilo , Metabolismo dos Carboidratos , Carboidratos/fisiologia , Proteínas Inativadoras do Complemento/farmacologia , Grânulos Citoplasmáticos/metabolismo , Citoesqueleto/fisiologia , Indução Enzimática/imunologia , Humanos , Antígeno de Macrófago 1/metabolismo , Monossacarídeos/farmacologia , Mycobacterium bovis/química , Mycobacterium bovis/imunologia , Mycobacterium kansasii/química , Mycobacterium kansasii/imunologia , Mycobacterium marinum/química , Mycobacterium marinum/imunologia , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/imunologia , NADPH Oxidases/biossíntese , Neutrófilos/enzimologia
16.
J Clin Microbiol ; 36(4): 918-25, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9542909

RESUMO

Although Mycobacterium ulcerans, M. marinum, and M. haemophilum are closely related, their exact taxonomic placements have not been determined. We performed gas chromatography of fatty acids and alcohols, as well as DNA-DNA hybridization and 16S rRNA gene sequence analysis, to clarify their relationships to each other and to M. tuberculosis. M. ulcerans and M. marinum were most closely related to one another, and each displayed very strong genetic affinities to M. tuberculosis; they are actually the two mycobacterial species outside the M. tuberculosis complex most closely related to M. tuberculosis. M. haemophilum was more distinct from M. ulcerans and M. marinum, and it appeared to be as related to these two species as to M. tuberculosis. These results are important with regard to the development of diagnostic and epidemiological tools such as species-specific DNA probes and PCR assays for M. ulcerans, M. marinum, and M. haemophilum. In addition, the finding that M. ulcerans and M. marinum are more closely related to M. tuberculosis than are other pathogenic mycobacterial species suggests that they may be evaluated as useful models for studying the pathogenesis of M. tuberculosis. M. marinum may be particularly useful in this regard since strains of this species grow much more rapidly than M. tuberculosis and yet can cause systemic disease in immunocompromised hosts.


Assuntos
DNA Bacteriano/análise , DNA Ribossômico/química , Ácidos Graxos/análise , Mycobacterium haemophilum/classificação , Mycobacterium marinum/classificação , Mycobacterium tuberculosis/classificação , Mycobacterium ulcerans/classificação , RNA Ribossômico 16S/genética , Cromatografia Gasosa , Mycobacterium haemophilum/química , Mycobacterium haemophilum/genética , Mycobacterium marinum/química , Mycobacterium marinum/genética , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Mycobacterium ulcerans/química , Mycobacterium ulcerans/genética , Hibridização de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...